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Abstract putational perspective they are ideal learning mate-
rial since they are easy to identify and offer a wealth

For a robot to be capable of development, it of redundancy (important for robustness). The infor-
must be able to explore its environment and mation we seek from repeated actions are the char-
learn from its experiences. It must find (or acteristic appearances and sounds of the object, per-
create) opportunities to experience the unfa- son, or robot involved, with context-dependent infor-
miliar in ways that reveal properties valid be- mation such as the visual background or unrelated
yond the immediate context. In this paper, we sounds stripped away. This allows the robot to gen-
develop a novel method for using the rhythm eralize its experience beyond its immediate context
of everyday actions as a basis for identifying and, for example, later recognize the same object
the characteristic appearance and sounds as- used in a different way.
sociated with objects, people, and the robot We wish our system to be scalable, so that it can
itself. Our approach is to identify and seg- correlate and integrate multiple sensor modalities
ment groups of signals in individual modali- (currently sight, sound, and proprioception). To that
ties (sight, hearing, and proprioception) based end, we detect and cluster periodic signals within
on their rhythmic variation, then to identify their individual modalities, and only then look for
and bind causally-related groups of signals cross-modal relationships between such signals. This
across different modalities. By including pro- avoids a combinatorial explosion of comparisons, and
prioception as a modality, this cross-modal means our system can be gracefully extended to deal
binding method applies to the robot itself, with new sensor modalities in future (touch, smell,
and we report a series of experiments in which etc).
the robot learns about the characteristics of et)ithe rowbody. lThis paper begins by introducing our robotic plat-its own body. form and what it can sense. We then introduce the

1. Introduction methods we use for detecting regularity in individ-
ual modalities and the tests applied to determine

To robots and young infants, the world is a puzzling when to 'bind' features in different modalities to-
place, a confusion of sights and sounds. But buried gether. The remainder (and larger part) of the paper
in the noise there are hints of regularity. Some of presents experiments where the robot detects regu-
this is natural; for example, objects tend to go thud larity in objects, people it encounters, and finally
when they fall over and hit the ground. Some is due itself.
to the child; for example, if it shakes its limbs in
joy or distress, and one of them happens to pass in 2. Platform and percepts
front of its face, it will see a fleshy blob moving in a
familiar rhythm. And some of the regularity is due to This work is implemented on the humanoid robot
the efforts of a caregiver; consider an infant's mother Cog (Brooks et al., 1999). Cog has an active vision
trying to help her child learn and develop, perhaps head, two six-degree of freedom arms, a rotating
by tapping a toy or a part of the child's body (such torso, and a microphone array arranged along its
as its hand) while speaking its name, or making a shoulders. For this paper, we work with visual in-
toy's characteristic sound (such as the bang-bang of put from one of Cog's four cameras, acoustic input
a hammer). from the microphone array, and proprioceptive feed-

In this paper we seek to extract useful information back from joints in the head, torso, and arms.
from repeated actions performed either by a care- Figure 1 shows how the robot's perceptual state
giver or the robot itself. Observation of infants shows can be summarized - the icons shown here will be
that such actions happen frequently, and from a com- used throughout the paper. The robot can detect
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Figure 2: When watching a person using a hammer, the

robot detects and group points moving in the image with
similar periodicity (Arsenio et al., 2003) to find the over-
all trajectory of the hammer and separate it out from the
background. The detected trajectory is shown on the
left (for clarity, just the coordinate in the direction of
maximum variation is plotted), and the detected object
boundary is overlaid on the image on the right.

A t 3. Detecting periodic events

We are interested in detecting conditions that re-
peat with some roughly constant rate, where that
rate is consistent with what a human can easily pro-
duce and perceive. This is not a very well defined
range, but we will consider anything above 10Hz to
be too fast, and anything below 0.1Hz to be too slow.

Figure 1: A summary of the possible perceptual states of Repetitive signals in this range are considered to be
our robot - the representation shown here will be used events in our system. For example, waving a flag is

throughout the paper. Events in any one of the three an event, clapping is an event, walking is an event,
modalities (sight, proprioception, or hearing) are indi- but the vibration of a violin string is not an event

cated as in block 1. When two events occur in different (too fast), and neither is the daily rise and fall of the
modalities, they may be independent (top of 2) or bound sun (too slow). Such a restriction is related to the

(bottom of 2). When events occur in three modalities, idea of natural kinds (Hendriks-Jansen, 1996), where
the possibilities are as shown in 3. perception is based on the physical dimensions and

practical interests of the observer.
To find periodicity in signals, the most obvi-

periodic events in any of the individual modalities ous approach is to use some version of the Fourier
(sight, hearing, proprioception). Any two events that transform. And indeed our experience is that
occur in different modalities will be compared, and use of the Short-Time Fourier Transform (STFT)
may be grouped together if there is evidence that demonstrates good performance when applied to
they are causally related or bound. Such relations the visual trajectory of periodically moving ob-
are transitive: if events A and B are bound to each jects (Arsenio et al., 2003). For example, Figure 2
other, and B and C are bound to each other, then shows a hammer segmented visually by tracking and
A and C will also be bound. This is important for grouping periodically moving points. However, our
consistent, unified perception of events, experience also leads us to believe that this approach

This kind of summarization ignores cases in is not ideal for detecting periodicity of acoustic sig-
which there are, for example, multiple visible ob- nals. Of course, acoustic signals have a rich struc-
jects moving periodically making different sounds. ture around and above the kHz range, for which the
We return to this point later in the paper. We Fourier transform and related transforms are very
have previously demonstrated that our system can useful. But detecting gross repetition around the
deal well with multiple-binding cases, since it single Hz range is very different. The sound gener-
performs segmentation in the individual modali- ated by a moving object can be quite complicated,
ties (Arsenio and Fitzpatrick, 2003). For this paper, since any constraints due to inertia or continuity are
there is no real need to consider such cases, since much weaker than for the physical trajectory of a
we don't expect the robot's caregiver to maliciously mass moving through space. In our experiments, we
introduce distractors into its environment - but nev- find that acoustic signals may vary considerably in
ertheless it is an important feature of our algorithm, amplitude between repetitions, and that there is sig-
which we now present. nificant variability or drift in the length of the pe-



8

(clink-clnk-clink...

0 0 2 / Low, slow whir
o 1oo•so oo • (vroom ... vwomrn...)

Tun (mks 0 SD 1000 1600 2•00

time (msecs)

Figure 3: Extraction of an acoustic pattern from a pe-riodic sound (a hammer banging). The algorithm for Figure 4: Results of an experiment in which the robot
signal segmnt(ationmis bapplied .To e ach orimale for could see a car and a cube, and both objects were mov-signal segmentation is applied to each normalized fre-and forth on a table,quency band. The box on the right shows one complete while the cube was being shaken (it has a rattle inside).
segmented period of the signal. Time and frequency axes
are labeled with single and double arrows respectively. By comparing periodicity information, the high-pitched

rattle sound and the low-pitched vrvom sound were dis-
tinguished and bound to the appropriate object, as shown

riods. These two properties combine to reduce the on the spectrogram. The object segmentations shown
efficacy of Fourier analysis. This led us to the de- were automatically determined.
velopment of a more robust method for periodicity
detection, which is now described. In the follow- til all samples are assigned, creating new clus-
ing discussion, the term signal refers to some sensor
reading or derived measurement, as described at the te is assige t aluste withacter ai
end of this section. The term period is used strictly time t is assigned t h cluster center i th

to describe event-scale repetition (in the Hz range), 11 ci -t 112< Pe..te/2. The cluster cener is the

as opposed to acoustic-scale oscillation (in the kHz average time coordinate of the samples assigned
range), to it, weighted according to their values.

Merging - Clusters from different quantized ranges
Period estimation - For every sample of the sig- and directions are merged into a single cluster if

nal, we determine how long it takes for the sig- I - cj 112< pestimet,/2 where ci and cj are the
nal to return to the same value from the same cluster centers.
direction (increasing or decreasing), if it ever
does. For this comparison, signal values are Segmentation - We find the average interval be-
quantizing adaptively into discrete ranges. In- tween neighboring cluster centers for positive and
tervals are computed in one pass using a look- negative derivatives, and break the signal into
up table that, as we scan through the sig- discrete periods based on these centers. Notice
nal, stores the time of the last occurrence of a that we do not rely on an assumption of a con-
value/direction pair. The next step is to find the stant period for segmenting the signal into re-
most common interval using a histogram (which peating units. The average interval is the final
requires quantization of interval values), giving estimate of the signal period.
us an initial estimate Pestimate for the event pe-
riod. This is essentially the approach presented The output of this entire process is an estimate of
in (Arsenio and Fitzpatrick, 2003). For the work the period of the signal, a segmentation of the sig-
presented in this paper, we extended this method nal into repeating units, and a confidence value that
to explicitly take into account the possibility of reflects how periodic the signal really is. The period
drift and variability in the period, as follows, estimation process is applied at multiple temporal

scales. If a strong periodicity is not found at the de-
Clustering - The previous procedure gives us an fault time scale, the time window is split in two and

estimate Pestimate of the event period. We now the procedure is repeated for each half. This consti-
cluster samples in rising and falling intervals of tutes a flexible compromise between both the time
the signal, using that estimate to limit the width and frequency based views of a signal: a particular
of our clusters but not to constrain the distance movement might not appear periodic when viewed
between clusters. This is a good match with real over a long time interval, but may appear as such at
signals we see that are generated from human ac- a finer scale.
tion, where the periodicity is rarely very precise. Figure 2 shows an example of using period-
Clustering is performed individually for each of icity to visual segment a hammer as a human
the quantized ranges and directions (increasing demonstrates the periodic task of hammering,
or decreasing), and then combined afterwards. while Figure 3 shows segmentation of the sound
Starting from the first signal sample not assigned of the hammer in the time-domain. Segmenta-
to a cluster, our algorithm runs iteratively un- tion in the frequency-domain was demonstrated



robot sees and hears a tambourine them. (Krotkov et al., 1996) has looked at recog-
Appearance and tambourine shaking segmentations

sound of tambourine nition of the sound generated by a single contact
are bound together event. Visual and acoustic cues are both individually

important for recognizing objects, and can comple-
ment each other when, for example, the robot hears
an object that is outside its view, or it sees an object
at rest. But when both visual and acoustic cues are
present, then we can do even better by looking at the
relationship between the visual motion of an object
and the sound it generates. Is there a loud bang at
an extreme of the physical trajectory? If so we might
be looking at a hammer. Are the bangs at either ex-
treme of the trajectory? Perhaps it is a bell. Such
relational features can only be defined and factored
into recognition if we can relate or bind visual and
acoustic signals.

Several theoretical arguments support the idea
of binding by temporal oscillatory signal correla-
tions (von der Malsburg, 1995). From a practical

Figure 5: Here the robot is shown a tambourine in use. perspective, repetitive synchronized events are ideal
The robot detects that there is a periodically moving for learning since they provide large quantities of re-
visual source, and a periodic sound source, and that the dundant data across multiple sensor modalities. In
two sources are causally related and should be bound. All addition, as already mentioned, extra information is
images in these figures are taken directly from recordings available in periodic or locally-periodic signals such
of real-time interactions, except for the summary box in as the period of the signal, and the phase relation-
the top-left (included since in some cases the recordings ship between signals from different senses - so for
are of poor quality). The images on the far right show the recogntion purposes the whole is greater than the
visual segmentations recorded for the tambourine in the sum of its parts.
visual modality. The background behind the tambourine, Therefore, a binding algorithm was developed to
a light wall with doors and windows, is correctly removed.
Acoustic segmentations are generated but not shown (see associate cross-modal, locally periodic signals, by
Figures 3 and 4 for examples). which we mean signals that have locally consistentperiodicity, but may experience global drift and vari-

ation in that rhythm over time. In our system, the

in (Arsenio and Fitzpatrick, 2003) and is illustrated detection of periodic cross-modal signals over an in-

in Figure 4). For these examples and all other ex- terval of seconds using the method described in the

periments described in this paper, our system tracks previous section is a necessary (but not sufficient)
moving pixels in a sequence of images from one of condition for a binding between these signals to take
the robot's cameras using a multiple tracking algo- place. We now describe the extra constraints that
rithm based on a pyramidal implementation of the must be met for binding to occur.

Lukas-Kanade algorithm. A microphone array sam- For concreteness assume that we are comparing a
pies the sounds around the robot at 16kHz. The visual and acoustic signal. Signals are compared by
Fourier transform of this signal is taken with a win- matching the cluster centers determined as in the
dow size of 512 samples and a repetition rate of previous section. Each peak within a cluster from
31.25Hz. The Fourier coefficients are grouped into the visual signal is associated to a temporally close
a set of frequency bands for the purpose of further (within a maximum distance of half a visual period)
analysis, along with the overall energy. peak from the acoustic signal, so that the sound

peak has a positive phase lag relative to the visual
4. Learning about objects peak. Binding occurs if the visual period matches

the acoustic one, or if it matches half the acoustic
Segmented features extracted from visual and acous- period, within a tolerance of 60ms. The reason for
tic segmentations (using the method presented the second match is that often sound is generated
in last section) can serve as the basis for an at the fastest points of an object's trajectory, or the
object recognition system. In the visual do- extremes of a trajectory, both of which occur twice
main, (Fitzpatrick, 2003) used segmentations de- for every single period of the trajectory. Typically
rived through physical contact as an opportunity for there will be several redundant matches that lead
a robot to become familiar with the appearance of to binding within a window of the sensor data for
objects in its environment and grow to recognize which several sound/visual peaks were detected. In
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Figure 7: Once the cross-modal binding system was in

Figure 6: In this experiment, the robot sees people shak- place, the authors started to have fun. This figure shows
ing their head. In the top row, the person says "no, no, the result of one author jumping up and down like crazy
no" in time with his head-shake. The middle row shows in front of the robot. The thud as he hit the floor was
the recorded state of the robot during this event - it binds correctly bound with segmentations of his body (column
the visually tracked face with the sound spoken. The on right). The bottom row shows segmentations from a
lower row shows the state during a control experiment, similarly successful experiment where the other author
when a person is just nodding and not saying anything. started applauding the robot.
Recorded segmentations for these experiments are shown
on the right. to be understood by human infants at around 10-12

months (American Academy Of Pediatrics, 1998).

(Arsenio and Fitzpatrick, 2003), we describe a more Sometimes a person's motion causes sound, just as
sophisticated binding method that can differentiate an ordinary object's motion might. Figure 7 shows
causally unconnected signals with periods that are a person jumping up and down in front of Cog. Ev-
similar just by coincidence, by looking for a drift in ery time he land on the floor, there is a loud bang,
the phase between the acoustic and visual signal over whose periodicity matches that of the tracked visual
time, but such nuances are less important in a benign motion. We expect that there are many situations
developmental scenario supported by a caregiver. like this that the robot can extract information from,

Figure 5 shows an experiment in which a person despite the fact that those situations were not con-
shook a tambourine in front of the robot for a while. sidered during the design of the binding algorithms.
The robot detected the periodic motion of the tam- The images in all these figures are taken from online
bourine, the rhythmic rise and fall of the jangling experiments - no offline processing is done.
bells, and bound the two signals together in real-
time. 6. Learning about the self

5. Learning about people So far we have considered only external events thatdo not involve the robot. In this section we turn to

In this section we do not wish to present any new al- the robot's perception of its own body. Cog treats
gorithms, but rather show that the cross-modal bind- proprioceptive feedback from its joints as just an-
ing method we developed for object perception also other sensory modality in which periodic events may
applies to perceiving people. Humans often use body occur. These events can be bound to the visual ap-
motion and repetition to reinforce their actions and pearance of its moving body part - assuming it is
speech, especially with young infants. If we do the visible - and the sound that the part makes, if any
same in our interactions with Cog, then it can use (in fact Cog's arms are quite noisy, making an audi-
those cues to link visual input with corresponding ble "whirr-whirr" when they move back and forth).
sounds. For example, Figure 6 shows a person shak- Figure 8 shows a basic binding experiment, in
ing their head while saying "no! no! no!" in time to which a person moved Cog's arm while it is out of
his head motion. The figure shows that the robot ex- the robot's view. The sound of the arm and the
tracts a good segmentation of the shaking head, and robot's proprioceptive sense of the arm moving are
links it with the sound signal. Such actions appear bound together. This is an important step, since in



robot is looking away from robot is looking towards its
its arm as human moves it arm as human moves it

sound detected IAappearance, sound,
and bund t theand action of the arm

motion of the arm all bound together

Figure 8: In this experiment, a person grabs Cog's arm Figure 9: In this experiment, a person shakes Cog's arm
and shakes it back and forth while the robot is looking in front of its face. What the robot hears and sees has the
away. The sound of the arm is detected, and found to be same rhythm as its own motion, so the robot's internal
causally related to the proprioceptive feedback from the sense of its arm moving is bound to the sound of that
moving joints, and so the robot's internal sense of its arm motion and the appearance of the arm.
moving is bound to the external sound of that motion.

of the robot's body in different modalities. That is
the busy lab Cog inhabits, people walk into view all why we extended our binding algorithm to include
the time, and there are frequent loud noises from the proprioceptive data.
neighboring machine shop. So cross-modal rhythm Children between 12 and 18 months of age be-
is an important cue for filtering out extraneous noise come interested in and attracted to their reflec-
and events of lesser interest. tion (American Academy Of Pediatrics, 1998). Such

In Figure 9, the situation is similar, with a per- behavior requires the integration of visual cues from
son moving the robot's arm, but the robot is now the mirror with proprioceptive cues from the child's
looking at the arm. In this case we see our first body. As shown in Figure 11, the binding algo-
example of a binding that spans three modalities: rithm was used not only to identify the robot's
sight, hearing, and proprioception. The same is true own acoustic rhythms, but also to identify visu-
in Figure 10, where Cog shakes its own arm while ally the robot's mirror image (an important mile-
watching it in a mirror. This idea is related to work stone in the development of a child's theory of
in (Metta and Fitzpatrick, 2003), where Cog located mind (Baron-Cohen, 1995)). It is important to stress
its arm by shaking it. that we are dealing with the low-level perceptual chal-

An important milestone in child development is lenges of a theory of mind approach, rather than the
reached when the child recognizes itself as an indi- high-level inferences and mappings involved. Cor-
vidual, and identifies its mirror image as belonging to relations of the kind we are making available could
itself (Rochat and Striano, 2002). Self-recognition form a grounding for a theory of mind and body-
in a mirror is also the focus of extensive study mapping, but are not of themselves part of a the-
in biology. Work on self-recognition in mirrors ory of mind - for example, they are completely un-
for chimpanzees (Gallup et al., 2002) suggests that related to the intent of the robot or the people
animals other than humans can also achieve such around it, and intent is key to understanding oth-
competency, although the interpretation of such re- ers in terms of the self (Kozima and Zlatev, 2000,
suits requires care and remains controversial. Self- Kozima and Yano, 2001). Our hope is that the per-
recognition is related to the notion of a theory-of- ceptual and cognitive research will ultimately merge
mind, where intents are assigned to other actors, and give a truly intentional robot that understands
perhaps by mapping them onto oneself, a topic of others in terms of its own goals and body image -
great interest in robotics (Kozima and Yano, 2001, an image which could develop incrementally using
Scassellati, 2001). Proprioceptive feedback provides cross-modal correlations of the kind explored in this
very useful reference signals to identify appearances paper.



robot moves its arm while arm

and action of the arm
all bound together

Figure 11: Cog can be shown different parts of its body
simply by letting it see that part (in a mirror if necessary)
and then shaking it, such as its (right) hand or (left)
flipper. Notice that this works for the head, even though

Figure 10: In this experiment, Cog is looking at itself shaking the head also affects the cameras.
in a mirror, while shaking its arm back and forth (the
views on the right are taken by a camera behind the u i.ios. eo,. Indu,

robot's left shoulder, looking out with the robot towards
the mirror). The reflected image of its arm is bound to
the robot's sense of its own motion, and the sound of the
motion. This binding is identical in kind to the bind-
ing that occurs if the robot sees and hears its own arm
moving directly without a mirror. However, the appear-
ance of the arm is from a quite different perspective than
Cog's own view of its arm.

7. Discussion and conclusions
Figure 12: This figure shows a real-time view of the

Most of us have had the experience of feeling a tool robot's status during the experiment in Figure 9. The
become an extension of ourselves as we use it (see robot is continually collecting visual and auditory seg-
(Stoytchev, 2003) for a literature review). Many of mentations, and checking for cross-model events. It also
us have played with mirror-based games that distort compares the current view with its database and per-
or invert our view of our own arm, and found that we forms object recognition to correlate with past experience
stop thinking of our own arm and quickly adopt the (bottom right).
new distorted arm as our own. About the only form
of distortion that can break this sense of ownership is
a delay between our movement and the proxy-arm's for far longer fragments if a light is flashed in syn-
movement. Such experiences argue for a sense of self chrony with it (Bashford et al., 1993) - flashing the
that is very robust to every kind of transformation light actually changes how the noise sounds. More
except latencies. Our work is an effort to build a per- generally, there is evidence that the cues used to
ceptual system which, from the ground up, focuses detect periodicity can be quite subtle and adaptive
on timing just as much as content. This is powerful (Kaernbach, 1993), suggesting there is a lot of po-
because timing is truly cross-modal, and leaves its tential for progress in replicating this ability beyond
mark on all the robot's senses, no matter how they the ideas already described.
are processed and transformed. Although there is much to do, front a practical per-

We are motivated by evidence from human percep- spective a lot has already been accomplished. Con-
tion that strongly suggests that timing information sider Figure 12, which shows a partial snapshot of the
can transfer between the senses in profound ways. robot's state during one of the experiments described
For example, experiments show that if a short frag- in the paper. The robot's experience of an event is
ment of white noise is recorded and played repeat- rich, with many visual and acoustic segmentations
edly, a listener will be able to hear its periodicity. generated as the event continues, relevant prior seg-
But as the fragment is made longer, at some point mentations recalled using object recognition, and the
this ability is lost. But the repetition can be heard relationship between data from different senses de-
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